The Seepage Model Considering Liquid/Solid Interaction in Confined Nanoscale Pores

Author:

Cui Xiaona12,Yang Erlong1ORCID,Song Kaoping1ORCID,Wang Yuming3

Affiliation:

1. Department of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China

2. Harold Vance Department of Petroleum Engineering, Texas A&M University, College Station, TX 77843, USA

3. Daqing Oilfield Limited Company, Daqing 163712, China

Abstract

Different from conventional reservoirs, nanoscale pores and fractures are dominant in tight or shale reservoirs. The flow behaviors of hydrocarbons in nanopores (called “confined space”) are more complex than that of bulk spaces. The interaction between liquid hydrocarbons and solid pore wall cannot be neglected. The viscosity formula which is varied with the pore diameter and interaction coefficient of liquids and solids in confined nanopores has been introduced in this paper to describe the interaction effects of hydrocarbons and pore walls. Based on the Navier-Stokes equation, the governing equation considered liquid/solid effect in two dimensions has been established, and approximate theoretical solutions to the governing equations have been achieved after mathematic simplification. By introducing the vortex equation, the complex numerical seepage model has been discretized and solved. Numerical results show that the radial velocity distribution near the solid wall has an obvious change when considering the liquid/solid interaction. The results consist well with that approximate mathematical solution. And when the capillary radius is smaller, the liquid and solid interaction coefficient n is greater. The liquid and solid interaction obviously cannot be neglected in the seepage model if the capillary radius is small than 50 nm when n>0.1. The numerical model has also been further validated by two types of nanopore flow tests: from pore to throat and inversely from throat to pore. There is no big difference in flow regularity of throat to pore model considering when liquid/solid interaction or not, whereas the liquid/solid interaction of pore to throat model totally cannot be overlooked.

Funder

Northeast Petroleum University Nursing for National Natural Science Young Foundation of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3