Author:
Luo Bin,Sun Yajun,Xu Zhimin,Chen Ge,Zhang Li,Lu Weining,Zhao Xianming,Yuan Huiqing
Abstract
On 22 May 2017, a groundwater inrush accident occurred in the gob area of coal floor at Dongyu Coal Mine in Qingxu County, Shanxi Province, China. The water inrush accident caused great damage, among which six people died and the direct economic loss was about CNY 5.05 million. An elliptical permeable passage appeared at the floor of the water inrush point, and the lithology of the outburst is mainly fragmented sandy mudstone and siltstone of coal roof No.2 in the lower layer of coal seam No.3, which is currently being mined, with a peak inflow of 500 m3/h. The water inrush happened due to following reasons: There is an abandoned stagnant water-closed roadway in coal seam No.2, which is the lower mine group of coal seam No.3. The abandoned roadway of coal seam No.2 is an inclined roadway. The water level of the roadway far away from the accident point is higher than the floor elevation of coal seam No.3. Under the joint action of water pressure, mining disturbance, and weakening of goaf water immersion, the original equilibrium state was broken, resulting in the destruction of the only 7 m water-barrier rock pillar between coal seam No.3 and coal seam No.2. The water in the goaf led upward along the roof crack, gradually evolved from seepage to gushing water, and a large amount of goaf water poured into the roadway in the working face of the 03304 panel, finally leading to the occurrence of catastrophic water inrush. Technically, the miners did not implement the technical provisions of the coal mine water control regulations, leading to the accident. In addition, the failure to arrange evacuees to a safe location after apparent signs of water inrush also increased the catastrophic level of the accident.
Funder
National Key Research and Development Program of China
Fundamental Research Funds for the Central Universities
the National Natural Science Foundation of China and Shanxi Coal-based Low Carbon Joint Fund Project
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献