Earthquake Ground Motion Matching on a Small Electric Shaking Table Using a Combined NN-PDFF Controller

Author:

Larbi Selma H.1ORCID,Bourahla Nouredine2,Benchoubane Hacine3,Choutri Khireddine3,Badaoui Mohammed4

Affiliation:

1. LGMGC Laboratory, Civil Engineering Department, University of Saad Dahleb, Blida, Algeria

2. LGSDS Laboratory, Civil Engineering Department, Ecole Nationale Polytechnique, El Harrach, Algeria

3. Aeronautic Department, University of Saad Dahleb, Blida, Algeria

4. LDMM Laboratory, Civil Engineering Department, University of Ziane Achor, Djelfa, Algeria

Abstract

Replicating acceleration time histories with high accuracy on shaking table platforms is still a challenging task. The complex interference between the components of the system, the inherent nonlinearities, and the coupling effect between the specimen and the shaking table are among other reasons that most affect the control performance. In this paper, a neural network- (NN-) based controller has been developed and experimentally implemented to improve the acceleration tracking performance of an electric shaking table. The latter is a biaxial shaking table driven by linear motors and controlled by a proportional-derivative-feedforward (PDFF) controller that is very efficient in reproducing displacement waveforms on the detriment of the simulation of the prescribed acceleration ground motions. In order to bypass this shortcoming, a control scheme combining the PDFF as a basic control function with a NN controller which filters the shaking table feedback signal and acts on the drive signal by compensating for acceleration distortions is proposed in this study. Several experimental tests have been carried out to build a database for offline training, validating, and testing of the proposed NN control model. Subsequently, the well-trained NN is implemented in the inner control loop of the shaking table to compensate, in parallel with the PDFF controller, the distortions during the replication of acceleration signals. Results of tests using earthquake records showed an enhancement in signal matching when integrating the NN model for both bare and loaded conditions of the shaking table. The tracking errors, estimated using the relative root-mean-square error, between the measured and the desired signal, are significantly reduced in time and frequency domains with the additional NN online controller.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3