An overview of control schemes for hydraulic shaking tables

Author:

Yao Jianjun1,Dietz Matt2,Xiao Rui1,Yu Han1,Wang Tao1,Yue Donghai3

Affiliation:

1. College of Mechanical and Electrical Engineering, Harbin Engineering University, China

2. Department of Civil Engineering, University of Bristol, UK

3. Changzhou College of Information Technology, China

Abstract

Shaking table testing is a common experimental method in earthquake engineering for performance assessment of structures subjected to dynamic excitations. As most shaking tables are driven by servo hydraulic actuators to meet the potentially significant force stroke demand, the review is restricted to hydraulic shaking tables. The purpose of the control systems of hydraulic shaking tables is to reproduce reference signals with low distortion. Accurate control of actuators is vital to the effectiveness of such apparatus. However, the system dynamics of a shaking table and the specimens to be tested on the shaking table are usually very complex and nonlinear. Achieving the control goal can prove to be challenging. A variety of closed- and open-loop control algorithms has been developed to solve different control problems. With the focus placed on the control schemes for hydraulic shaking tables, the paper reviews algorithms that are currently used in the testing industry, as well as those which are the subject of academic and industrial research. It is by no means a complete survey but provides key reference for further development.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3