A Novel Multimode Fault Classification Method Based on Deep Learning

Author:

Zhou Funa1ORCID,Gao Yulin1ORCID,Wen Chenglin2ORCID

Affiliation:

1. School of Computer and Information Engineering, Henan University, Kaifeng, China

2. School of Automation, Hangzhou Dianzi University, Hangzhou, China

Abstract

Due to the problem of load varying or environment changing, machinery equipment often operates in multimode. The data feature involved in the observation often varies with mode changing. Mode partition is a fundamental step before fault classification. This paper proposes a multimode classification method based on deep learning by constructing a hierarchical DNN model with the first hierarchy specially devised for the purpose of mode partition. In the second hierarchy , different DNN classification models are constructed for each mode to get more accurate fault classification result. For the purpose of providing helpful information for predictive maintenance, an additional DNN is constructed in the third hierarchy to further classify a certain fault in a given mode into several classes with different fault severity. The application to multimode fault classification of rolling bearing fault shows the effectiveness of the proposed method.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Science Applications,Modelling and Simulation

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3