Affiliation:
1. School of Mechatronics and Automotive Engineering, Tianshui Normal University, Tianshui 741000, China
2. School of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, China
Abstract
<abstract>
<p>As an indispensable part of large Computer Numerical Control machine tool, rolling bearing faults diagnosis is particularly important. However, due to the imbalanced distribution and partially missing of collected monitoring data, such diagnostic issue generally emerging in manufacturing industry is still hardly to be solved. Thus, a multilevel recovery diagnosis model for rolling bearing faults from imbalanced and partially missing monitoring data is formulated in this paper. Firstly, a regulable resampling plan is designed to handle the imbalanced distribution of data. Secondly, a multilevel recovery scheme is formed to deal with partially missing. Thirdly, an improved sparse autoencoder based multilevel recovery diagnosis model is built to identify the health status of rolling bearings. Finally, the diagnostic performance of the designed model is verified by artificial faults and practical faults tests, respectively.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献