Towards Accurate Node-Based Detection of P2P Botnets

Author:

Yin Chunyong12ORCID

Affiliation:

1. School of Computer & Software, Nanjing University of Information Science & Technology, Nanjing 210044, China

2. Jiangsu Engineering Center of Networking Monitoring, Nanjing University of Information Science & Technology, Nanjing 210044, China

Abstract

Botnets are a serious security threat to the current Internet infrastructure. In this paper, we propose a novel direction for P2P botnet detection called node-based detection. This approach focuses on the network characteristics of individual nodes. Based on our model, we examine node’s flows and extract the useful features over a given time period. We have tested our approach on real-life data sets and achieved detection rates of 99-100% and low false positives rates of 0–2%. Comparison with other similar approaches on the same data sets shows that our approach outperforms the existing approaches.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Peer-to-peer botnets: exploring behavioural characteristics and machine/deep learning-based detection;EURASIP Journal on Information Security;2024-05-27

2. PeerAmbush: Multi-Layer Perceptron to Detect Peer-to-Peer Botnet;Symmetry;2022-11-23

3. Comprehensive Method of Botnet Detection Using Machine Learning;International Journal of Open Source Software and Processes;2021-10

4. A Review of Various Mechanisms for Botnets Detection;Proceedings of the Third International Conference on Computational Intelligence and Informatics;2020

5. An Adaptive Multi-Layer Botnet Detection Technique Using Machine Learning Classifiers;Applied Sciences;2019-06-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3