Abstract
In recent years, the botnets have been the most common threats to network security since it exploits multiple malicious codes like a worm, Trojans, Rootkit, etc. The botnets have been used to carry phishing links, to perform attacks and provide malicious services on the internet. It is challenging to identify Peer-to-peer (P2P) botnets as compared to Internet Relay Chat (IRC), Hypertext Transfer Protocol (HTTP) and other types of botnets because P2P traffic has typical features of the centralization and distribution. To resolve the issues of P2P botnet identification, we propose an effective multi-layer traffic classification method by applying machine learning classifiers on features of network traffic. Our work presents a framework based on decision trees which effectively detects P2P botnets. A decision tree algorithm is applied for feature selection to extract the most relevant features and ignore the irrelevant features. At the first layer, we filter non-P2P packets to reduce the amount of network traffic through well-known ports, Domain Name System (DNS). query, and flow counting. The second layer further characterized the captured network traffic into non-P2P and P2P. At the third layer of our model, we reduced the features which may marginally affect the classification. At the final layer, we successfully detected P2P botnets using decision tree Classifier by extracting network communication features. Furthermore, our experimental evaluations show the significance of the proposed method in P2P botnets detection and demonstrate an average accuracy of 98.7%.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference55 articles.
1. DNSRadar: Outsourcing Malicious Domain Detection Based on Distributed Cache-Footprints
2. Spam and criminal activity;Alazab,2016
3. Denial-of-Service (DoS) Attack and Botnet: Network Analysis, Research Tactics, and Mitigation;Arora,2018
Cited by
104 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献