Application of CNN-Based Machine Learning in the Study of Motor Fault Diagnosis

Author:

Peng Xiuyan1,Wei Lunpan1ORCID,Gao Wei1

Affiliation:

1. College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China

Abstract

With the development of science and technology, the rapid development of social economy, the motor as a new type of transmission equipment, in the production and life of people occupies a pivotal position. Under the rapid development of computer and electronic technology, manufacturing equipment is becoming larger, faster, more continuous, and more automated. This has resulted in complex, expensive, accident-damaging, and high-impact equipment for electric motors; even routine maintenance requires significant equipment maintenance and maintenance costs. If a fault occurs, it will cause serious damage to the entire equipment and can even have a major impact on the entire production process, leading to a serious economic and social life. In this paper, a CNN-based machine learning fault diagnosis method is proposed to address the problem of high incidence of motor faults and difficulty in identifying fault types. A fault reproduction test is constructed by machine learning techniques to extract vibration time domain data for normal operating conditions, rotor eccentricity, stator short circuit, and bearing inner ring fault; divide the data segment into 15 speed segments, extract 13 typical time domain features for each speed segment; and perform mathematical statistics for fault diagnosis. Compared with the traditional algorithm, the method has more comprehensive feature information extraction, higher diagnostic accuracy, and faster diagnostic speed, with a fault diagnosis accuracy of 98.7%.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3