Affiliation:
1. School of Music Shaanxi Normal University, Xi'an Shaanxi 710119, China
Abstract
The main semantic symbol systems for people to express their emotions include natural language and music. The analysis and establishment of semantic association between language and music is helpful to provide more accurate retrieval and recommendation services for text and music. Existing researches mainly focus on the surface symbolic features and association of natural language and music, which limits the performance and interpretability of applications based on semantic association of natural language and music. Emotion is the main meaning of music expression, and the semantic range of text expression includes emotion. In this paper, the semantic features of music are extracted from audio features, and the semantic matching model of audio emotion analysis is constructed to analyze ethnic music audio emotion through feature extraction ability of deep structure. The model is based on the framework of emotional semantic matching technology and realizes the emotional semantic matching of music fragments and words through semantic emotional recognition algorithm. Multiple experiments show that when
, the recognition rate of multichannel fusion model is 88.42%, and the model can reasonably realize audio emotion analysis. When the spatial dimension of music data changes, the classification accuracy reaches the highest when the spatial dimension is 25. Analysing the semantic association of audio promotes the application of folk music in occupational therapy.
Funder
Shaanxi Normal University
Subject
Occupational Therapy,General Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Using artificial intelligence to analyze and classify music emotion;Journal of Computational Methods in Sciences and Engineering;2024-08-14