A Hybrid Approach Using Oversampling Technique and Cost-Sensitive Learning for Bankruptcy Prediction

Author:

Le Tuong1ORCID,Vo Minh Thanh2,Vo Bay3ORCID,Lee Mi Young1ORCID,Baik Sung Wook1ORCID

Affiliation:

1. Digital Contents Research Institute, Sejong University, Seoul, Republic of Korea

2. Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam

3. Faculty of Information Technology, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh, Vietnam

Abstract

The diagnosis of bankruptcy companies becomes extremely important for business owners, banks, governments, securities investors, and economic stakeholders to optimize the profitability as well as to minimize risks of investments. Many studies have been developed for bankruptcy prediction utilizing different machine learning approaches on various datasets around the world. Due to the class imbalance problem occurring in the bankruptcy datasets, several special techniques would be used to improve the prediction performance. Oversampling technique and cost-sensitive learning framework are two common methods for dealing with class imbalance problem. Using oversampling techniques and cost-sensitive learning framework independently also improves predictability. However, for datasets with very small balancing ratios, combining two above techniques will produce the better results. Therefore, this study develops a hybrid approach using oversampling technique and cost-sensitive learning, namely, HAOC for bankruptcy prediction on the Korean Bankruptcy dataset. The first module of HAOC is oversampling module with an optimal balancing ratio found in the first experiment that will give the best overall performance for the validation set. Then, the second module uses the cost-sensitive learning model, namely, CBoost algorithm to bankruptcy prediction. The experimental results show that HAOC will give the best performance value for bankruptcy prediction compared with the existing approaches.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3