Author:
Sena Raul,Ben Hamida Sana
Publisher
Springer Nature Switzerland
Reference21 articles.
1. Aggarwal, C.C., Kong, X., Gu, Q., Han, J., Philip, S.Y.: Active learning: a survey. In: Data Classification, pp. 599–634. Chapman and Hall (2014)
2. Bach, F.R., Heckerman, D., Horvitz, E.: Considering cost asymmetry in learning classifiers. J. Mach. Learn. Res. 7, 1713–1741 (2006)
3. Chawla, N.V., Japkowicz, N., Kotcz, A.: Special issue on learning from imbalanced data sets. ACM SIGKDD Explor. Newsl. 6(1), 1–6 (2004)
4. Chen, B., Xia, S., Chen, Z., Wang, B., Wang, G.: RSMOTE: a self-adaptive robust smote for imbalanced problems with label noise. Inf. Sci. 553, 397–428 (2021). https://doi.org/10.1016/j.ins.2020.10.013
5. Devarriya, D., Gulati, C., Mansharamani, V., Sakalle, A., Bhardwaj, A.: Unbalanced breast cancer data classification using novel fitness functions in genetic programming. 140, 112866. https://doi.org/10.1016/j.eswa.2019.112866