Affiliation:
1. School of Computer Science & Information Engineering, Hubei University, Wuhan 430062, China
2. Hubei Key Laboratory of Applied Mathematics, Hubei University, Wuhan 430062, China
Abstract
In software engineering, defect prediction is significantly important and challenging. The main task is to predict the defect proneness of the modules. It helps developers find bugs effectively and prioritize their testing efforts. At present, a lot of valuable researches have been done on this topic. However, few studies take into account the impact of time factors on the prediction results. Therefore, in this paper, we propose an improved Elman neural network model to enhance the adaptability of the defect prediction model to the time-varying characteristics. Specifically, we optimized the initial weights and thresholds of the Elman neural network by incorporating adaptive step size in the Cuckoo Search (CS) algorithm. We evaluated the proposed model on 7 projects collected from public PROMISE repositories. The results suggest that the contribution of the improved CS algorithm to Elman neural network model is prominent, and the prediction performance of our method is better than that of 5 baselines in terms of F-measure and Cliff’s Delta values. The F-measure values are generally increased with a maximum growth rate of 49.5% for the POI project.
Subject
General Engineering,General Mathematics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献