A Study on ML-Based Software Defect Detection for Security Traceability in Smart Healthcare Applications

Author:

Mcmurray Samuel12,Sodhro Ali Hassan1ORCID

Affiliation:

1. Department of Computer Science, Kristianstad University, SE-29188 Kristianstad, Sweden

2. School of Engineering, Jönköping University, SE-55318 Jönköping, Sweden

Abstract

Software Defect Prediction (SDP) is an integral aspect of the Software Development Life-Cycle (SDLC). As the prevalence of software systems increases and becomes more integrated into our daily lives, so the complexity of these systems increases the risks of widespread defects. With reliance on these systems increasing, the ability to accurately identify a defective model using Machine Learning (ML) has been overlooked and less addressed. Thus, this article contributes an investigation of various ML techniques for SDP. An investigation, comparative analysis and recommendation of appropriate Feature Extraction (FE) techniques, Principal Component Analysis (PCA), Partial Least Squares Regression (PLS), Feature Selection (FS) techniques, Fisher score, Recursive Feature Elimination (RFE), and Elastic Net are presented. Validation of the following techniques, both separately and in combination with ML algorithms, is performed: Support Vector Machine (SVM), Logistic Regression (LR), Naïve Bayes (NB), K-Nearest Neighbour (KNN), Multilayer Perceptron (MLP), Decision Tree (DT), and ensemble learning methods Bootstrap Aggregation (Bagging), Adaptive Boosting (AdaBoost), Extreme Gradient Boosting (XGBoost), Random Forest(RF), and Generalized Stacking (Stacking). Extensive experimental setup was built and the results of the experiments revealed that FE and FS can both positively and negatively affect performance over the base model or Baseline. PLS, both separately and in combination with FS techniques, provides impressive, and the most consistent, improvements, while PCA, in combination with Elastic-Net, shows acceptable improvement.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference33 articles.

1. Optimization of software development life cycle process to minimize the delivered defect density;Kadadevaramath;OPSEARCH,2019

2. Software Defect Reduction Top 10 List;Boehm;Computer,2001

3. A Survey of DevOps Concepts and Challenges;Leite;ACM Comput. Surv.,2020

4. Improving La Redoute’s CI/CD Pipeline and DevOps Processes by Applying Machine Learning Techniques;Battina;JETIR,2021

5. Software Defect Prediction Model Based on LASSO-SVM;Wang;Neural Comput. Appl.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3