Analysis of Effectiveness and Performance Prediction of Sports Flipped Classroom Teaching Based on Neural Networks

Author:

Xu Wei1ORCID,Xiong Wenying1,Shao Zhe1,Li Yun1ORCID

Affiliation:

1. College of Physical Education and Health, Jiangxi University of Traditional Chinese Medicine, Nanchang 330000, Jiangxi, China

Abstract

Traditional physical education methods are unable to meet this requirement due to the practical nature of sports skill teaching. As a result, as the times demanded, the flipped classroom based on neural network technology arose. It has the potential to not only promote the modernization of physical education but also to ensure that it has a positive educational impact. This is a mode of instruction. Furthermore, colleges and universities are increasingly focusing on college students’ overall quality development. A method for predicting college students’ sports performance using a particle swarm optimization neural network is proposed to accurately predict sports performance and provide a reliable analysis basis for the establishment of sports teaching goals. Neural networks are used in the model. The particle swarm optimization algorithm optimizes the variance and weights of the neural network to improve the accuracy of college students’ sports performance predicted by the neural network by updating the particle position and speed through the two extreme values of individual extreme values and global extreme values. Teachers always play the role of the facilitator and helper in the teaching process, which realizes the transformation of teachers’ and students’ self-positioning, allows students to better play the lead role, and stimulates students’ interest in learning.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3