Combat Mobile Evasive Malware via Skip-Gram-Based Malware Detection

Author:

Egitmen Alper1ORCID,Bulut Irfan2,Aygun R. Can3,Gunduz A. Bilge1,Seyrekbasan Omer1,Yavuz A. Gokhan1

Affiliation:

1. Computer Engineering Department, Yildiz Technical University, Istanbul, Turkey

2. OM Partners, Koralenhoeve 23, 2160, Wommelgem, Belgium

3. University of California, Engineering VI, Los Angeles, CA 90095, USA

Abstract

Android malware detection is an important research topic in the security area. There are a variety of existing malware detection models based on static and dynamic malware analysis. However, most of these models are not very successful when it comes to evasive malware detection. In this study, we aimed to create a malware detection model based on a natural language model called skip-gram to detect evasive malware with the highest accuracy rate possible. In order to train and test our proposed model, we used an up-to-date malware dataset called Argus Android Malware Dataset (AMD) since the AMD contains various evasive malware families and detailed information about them. Meanwhile, for the benign samples, we used Comodo Android Benign Dataset. Our proposed model starts with extracting skip-gram-based features from instruction sequences of Android applications. Then it applies several machine learning algorithms to classify samples as benign or malware. We tested our proposed model with two different scenarios. In the first scenario, the random forest-based classifier performed with 95.64% detection accuracy on the entire dataset and 95% detection accuracy against evasive only samples. In the second scenario, we created a test dataset that contained zero-day malware samples only. For the training set, we did not use any sample that belongs to the malware families in the test set. The random forest-based model performed with 37.36% accuracy rate against zero-day malware. In addition, we compared our proposed model’s malware detection performance against several commercial antimalware applications using VirusTotal API. Our model outperformed 7 out of 10 antimalware applications and tied with one of them on the same test scenario.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3