Scramblesuit: An effective timing side-channels framework for malware sandbox evasion1

Author:

Nappa Antonio12,Úbeda-Portugués Aaron1,Papadopoulos Panagiotis3,Varvello Matteo4,Tapiador Juan1,Lanzi Andrea5

Affiliation:

1. Universidad Carlos III de Madrid

2. Zimperium zLabs team, Zimperium Inc.

3. Telefonica Research

4. Nokia Bell Labs.

5. University of Milan

Abstract

Online malware scanners are one of the best weapons in the arsenal of cybersecurity companies and researchers. A fundamental part of such systems is the sandbox that provides an instrumented and isolated environment (virtualized or emulated) for any user to upload and run unknown artifacts and identify potentially malicious behaviors. The provided API and the wealth of information in the reports produced by these services have also helped attackers test the efficacy of numerous techniques to make malware hard to detect. The most common technique used by malware for evading the analysis system is to monitor the execution environment, detect the presence of any debugging artifacts, and hide its malicious behavior if needed. This is usually achieved by looking for signals suggesting that the execution environment does not belong to a native machine, such as specific memory patterns or behavioral traits of certain CPU instructions. In this paper, we show how an attacker can evade detection on such analysis services by incorporating a Proof-of-Work (PoW) algorithm into a malware sample. Specifically, we leverage the asymptotic behavior of the computational cost of PoW algorithms when they run on some classes of hardware platforms to effectively detect a non bare-metal environment of the malware sandbox analyzer. To prove the validity of this intuition, we design and implement Scramblesuit, a framework to automatically (i) implement sandbox detection strategies, and (ii) embed a test evasion program into an arbitrary malware sample. We perform a comprehensive evaluation of Scramblesuit across a wide range of: 1) COTS architectures (ARM, Apple M1, i9, i7 and Xeon), 2) malware families, and 3) online sandboxes (JoeSandbox, Sysinternals, C2AE, Zenbox, Dr.Web VX Cube, Tencent HABO, YOMI Hunter). Our empirical evaluation shows that a PoW-based evasion technique is hard to fingerprint, and reduces existing malware detection rate by a factor of 10. The only plausible counter-measure to Scramblesuit is to rely on bare-metal online malware scanners, which is unrealistic given they currently handle millions of daily submissions.

Publisher

IOS Press

Subject

Computer Networks and Communications,Hardware and Architecture,Safety, Risk, Reliability and Quality,Software

Reference65 articles.

1. G. Alsmeyer, Chebyshev’s inequality, in: International Encyclopedia of Statistical Science, Springer, Berlin Heidelberg, 2011.

2. anonymized. Yara Signature Detector. anonymized, 2007.

3. anonymized. Sandbox 3. anonymized, 2020.

4. anonymized. Sandbox 1, 2020, anonymized.

5. anonymized. Sandbox 2, 2020, anonymized.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3