A Decentralized Partially Observable Decision Model for Recognizing the Multiagent Goal in Simulation Systems

Author:

Yue Shiguang12ORCID,Yordanova Kristina2,Krüger Frank2,Kirste Thomas2,Zha Yabing1

Affiliation:

1. College of Information System and Management, National University of Defense Technology, Changsha 410073, China

2. Institute of Computer Science, University of Rostock, 18051 Rostock, Germany

Abstract

Multiagent goal recognition is important in many simulation systems. Many of the existing modeling methods need detailed domain knowledge of agents’ cooperative behaviors and a training dataset to estimate policies. To solve these problems, we propose a novel decentralized partially observable decision model (Dec-POMDM), which models cooperative behaviors by joint policies. In this compact way, we only focus on the distribution of joint policies. Additionally, a model-free algorithm, cooperative colearning based on Sarsa, is exploited to estimate agents’ policies under the assumption of rationality, which makes the training dataset unnecessary. In the inference, considering that the Dec-POMDM is discrete and its state space is large, we implement a marginal filter (MF) under the framework of the Dec-POMDM, where the initial world states and results of actions are uncertain. In the experiments, a new scenario is designed based on the standard predator-prey problem: we increase the number of preys, and our aim is to recognize the real target of predators. Experiment results show that (a) our method recognizes goals well even when they change dynamically; (b) the Dec-POMDM outperforms supervised trained HMMs in terms of precision, recall, and F-measure; and (c) the MF infers goals more efficiently than the particle filter under the framework of the Dec-POMDM.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Modelling and Simulation

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3