Affiliation:
1. College of Information System and Management, National University of Defense Technology, Changsha 410073, China
Abstract
Recognizing destinations of a maneuvering agent is important in real time strategy games. Because finding path in an uncertain environment is essentially a sequential decision problem, we can model the maneuvering process by the Markov decision process (MDP). However, the MDP does not define an action duration. In this paper, we propose a novel semi-Markov decision model (SMDM). In the SMDM, the destination is regarded as a hidden state, which affects selection of an action; the action is affiliated with a duration variable, which indicates whether the action is completed. We also exploit a Rao-Blackwellised particle filter (RBPF) for inference under the dynamic Bayesian network structure of the SMDM. In experiments, we simulate agents’ maneuvering in a combat field and employ agents’ traces to evaluate the performance of our method. The results show that the SMDM outperforms another extension of the MDP in terms of precision, recall, andF-measure. Destinations are recognized efficiently by our method no matter whether they are changed or not. Additionally, the RBPF infer destinations with smaller variance and less time than the SPF. The average failure rates of the RBPF are lower when the number of particles is not enough.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献