Affiliation:
1. Department of Agronomy, Agricultural College of Guangxi University, Nanning 530004, China
2. Guangxi Institute of Botany, Chinese Academy of Sciences, Guilin 541006, China
Abstract
Allelochemicals are metabolites produced by living organisms that have a detrimental effect on other species when released into the environment. These chemicals play critical roles in the problems associated with crop replanting. Benzoic acid is a representative allelochemical found in root exudates and rhizosphere soil of crops and inhibits crop growth. The bioremediation of allelochemicals by microorganisms is an efficient decontamination process. In this research, a bacterial strain capable of degrading benzoic acid as the sole carbon source was isolated. The genome of the strain was sequenced, and biodegradation characteristics and metabolic mechanisms were examined. Strain SCB32 was identified as Pseudomonas sp. based on 16S rRNA gene analysis coupled with physiological and biochemical analyses. The degradation rate of 800 mg L-1 benzoic acid by strain SCB32 was greater than 97.0% in 24 h. The complete genome of strain SCB32 was 6.3 Mbp with a GC content of 64.6% and 5960 coding genes. Potential benzoic acid degradation genes were found by comparison to the KEGG database. Some key intermediate metabolites of benzoic acid, such as catechol, were detected by gas chromatography-mass spectrometry. The biodegradation pathway of benzoic acid, the ortho pathway, is proposed for strain SCB32 based on combined data from genome annotation and mass spectrometry. Moreover, the benzoic acid degradation products from strain SCB32 were essentially nontoxic to lettuce seedlings, while seeds in the benzoic acid-treated group showed significant inhibition of germination. This indicates a possible application of strain SCB32 in the bioremediation of benzoic acid contamination in agricultural environments.
Funder
Science and Technology Major Project of Guangxi
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献