Application of Signal Analysis to the Climate

Author:

Stallinga Peter1ORCID,Khmelinskii Igor2ORCID

Affiliation:

1. Center for Electronics, Optoelectronics and Telecommunications, Faculty of Science and Technology, University of the Algarve, 8005-139 Faro, Portugal

2. Center of Studies in Chemistry of the Algarve, Faculty of Science and Technology, University of the Algarve, 8005-139 Faro, Portugal

Abstract

The primary ingredient of the Anthropogenic Global Warming hypothesis, namely, the assumption that additional atmospheric carbon dioxide substantially raises the global temperature, is studied. This is done by looking at the data of temperature and CO2, both in the time domain and in the phase domain of periodic data. Bicentenary measurements are analyzed and a relaxation model is introduced in the form of an electronic equivalent circuit. The effects of this relaxation manifest themselves in delays in the time domain and correlated phase shifts in the phase domain. For extremely long relaxation time constants, the delay is maximally one-quarter period, which for the yearly-periodic signal means 3 months. This is not in line with the analyzed data, the latter showing delays of 9 (−3) months. These results indicate a reverse function of cause and effect, with temperature being the cause for atmospheric CO2 changes, rather than their effect. These two hypotheses are discussed on basis of literature, where it was also reported that CO2 variations are lagging behind temperature variations.

Publisher

Hindawi Limited

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3