Affiliation:
1. Department of Physics and Applied Physics, University of Buea, Buea, Cameroon
2. African Institute for Mathematical Science, 608 Limbe, Cameroon
3. Polytechnic, Saint Jerome Catholic University Institute of Douala, Akwa, 5949 Douala, Cameroon
Abstract
The method of generalized extreme value family of distributions (Weibull, Gumbel, and Frechet) is employed for the first time to assess the wind energy potential of Debuncha, South-West Cameroon, and to study the variation of energy over the seasons on this site. The 29-year (1983–2013) average daily wind speed data over Debuncha due to missing values in the years 1992 and 1994 is gotten from NASA satellite data through the RETScreen software tool provided by CANMET Canada. The data is partitioned into min-monthly, mean-monthly, and max-monthly data and fitted using maximum likelihood method to the two-parameter Weibull, Gumbel, and Frechet distributions for the purpose of determining the best fit to be used for assessing the wind energy potential on this site. The respective shape and scale parameters are estimated. By making use of the P values of the Kolmogorov-Smirnov statistic (K-S) and the standard error (s.e) analysis, the results show that the Frechet distribution best fits the min-monthly, mean-monthly, and max-monthly data compared to the Weibull and Gumbel distributions. Wind speed distributions and wind power densities of both the wet and dry seasons are compared. The results show that the wind power density of the wet season was higher than in the dry season. The wind speeds at this site seem quite low; maximum wind speeds are listed as between 3.1 and 4.2 m/s, which is below the cut-in wind speed of many modern turbines (6–10 m/s). However, we recommend the installation of low cut-in wind turbines like the Savonius or Aircon (10 KW) for stand-alone low energy need.
Funder
Government of Canada’s International Development Research Centre (IDRC)
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献