CUL3 and COPS5 Related to the Ubiquitin-Proteasome Pathway Are Potential Genes for Muscle Atrophy in Mice

Author:

Xu Qun1ORCID,Li Jinyou1ORCID,Yang Ji1ORCID,Xu Zherong1ORCID

Affiliation:

1. Department of Geriatrics, The First Affiliated Hospital, Zhejiang University, School of Medicine, No. 79, Qingchun Road, Hangzhou, Zhejiang, China

Abstract

Sarcopenia is a condition that reduces muscle mass and exercise capacity. Muscle atrophy is a common manifestation of sarcopenia and can increase morbidity and mortality in specific patient populations. The aim of this study was to identify novel prognostic biomarkers for muscle atrophy and associated pathway analysis using bioinformatics methods. The samples were first divided into different age groups and different muscle type groups, respectively, and each of these samples was analyzed for differences to obtain two groups of differentially expressed genes (DEGs). The two groups of DEGs were intersected using Venn diagrams to obtain 1,630 overlapping genes, and enrichment analysis was performed to observe the Gene Ontology (GO) functional terms of overlapping genes and the enrichment of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Subsequently, WGCNA (weighted gene coexpression network analysis) was used to find gene modules associated with both the age and muscle type to obtain the lightgreen module. The genes in the key modules were analyzed using PPI, and the top five genes were obtained using the MCC (maximum correntropy criterion) algorithm. Finally, CUL3 and COPS5 were obtained by comparing gene expression levels and analyzing the respective KEGG pathways using gene set enrichment analysis (GSEA). In conclusion, we identified that CUL3 and COPS5 may be novel prognostic biomarkers in muscle atrophy based on bioinformatics analysis. CUL3 and COPS5 are associated with the ubiquitin-proteasome pathway.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3