Deep Reinforcement Learning-Based Collaborative Video Caching and Transcoding in Clustered and Intelligent Edge B5G Networks

Author:

Wan Zheng1ORCID,Li Yan12ORCID

Affiliation:

1. School of Information Management, Jiangxi University of Finance and Economics, No. 665, West Yuping Road, Nanchang, Jiangxi 330032, China

2. School of Information Engineering, Nanchang Institute of Technology, No. 289, Tianxiang Road, Nanchang, Jiangxi 330099, China

Abstract

In the next-generation wireless communications system of Beyond 5G networks, video streaming services have held a surprising proportion of the whole network traffic. Furthermore, the user preference and demand towards a specific video might be different because of the heterogeneity of users’ processing capabilities and the variation of network condition. Thus, it is a complicated decision problem with high-dimensional state spaces to choose appropriate quality videos according to users’ actual network condition. To address this issue, in this paper, a Content Distribution Network and Cluster-based Mobile Edge Computing framework has been proposed to enhance the ability of caching and computing and promote the collaboration among edge severs. Then, we develop a novel deep reinforcement learning-based framework to automatically obtain the intracluster collaborative caching and transcoding decisions, which are executed based on video popularity, user requirement prediction, and abilities of edge servers. Simulation results demonstrate that the quality of video streaming service can be significantly improved by using the designed deep reinforcement learning-based algorithm with less backhaul consumption and processing costs.

Funder

Jiangxi University of Finance and Economics

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3