On-Chip All-Optical Switching and Memory by Silicon Photonic Crystal Nanocavities

Author:

Notomi Masaya1,Tanabe Takasumi1,Shinya Akihiko1,Kuramochi Eiichi1,Taniyama Hideaki1

Affiliation:

1. NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi 2430198, Japan

Abstract

We review our recent studies on all-optical switching and memory operations based on thermo-optic and carrier-plasma nonlinearities both induced by two-photon absorption in silicon photonic crystal nanocavities. Owing to high-Q and small volume of these photonic crystal cavities, we have demonstrated that the switching power can be largely reduced. In addition, we demonstrate that the switching time is also reduced in nanocavity devices because of their short diffusion time. These features are important for all-optical nonlinear processing in silicon photonics technologies, since silicon is not an efficient optical nonlinear material. We discuss the effect of the carrier diffusion process in our devices, and demonstrate improvement in terms of the response speed by employing ion-implantation process. Finally, we show that coupled bistable devices lead to all-optical logic, such as flip-flop operation. These results indicate that a nanocavity-based photonic crystal platform on a silicon chip may be a promising candidate for future on-chip all-optical information processing in a largely integrated fashion.

Publisher

Hindawi Limited

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3