All-optical memory based on slow light and Kerr effect in photonic crystal platform with independent write/read/hold control

Author:

Mirzaiee Sina,Noori MinaORCID,Baghban HamedORCID,Veladi Hadi

Abstract

Abstract A general scheme has been proposed for the design of photonic-crystal-based all-optical memory by implementing the Kerr effect and slow light phenomenon and a memory cell with independent control on the read, write and hold processes is presented. A photonic crystal slab platform comprised of air holes in a square array with a hole radius of R = 192.5 nm and slab thickness of 275 nm is considered to realize the optical memory operating at the signal and pump wavelengths of λ = 1550 nm and λ = 1604 nm, respectively. The radii of the holes and the thickness of the proposed slab are engineered to provide proper functionality in the write/read waveguides and memory cell. For the slab thickness of 275 nm, the radii of the defect holes at the center of the read and write channels, and memory cell are determined to be 66 nm, 60.5 nm, and 55 nm, respectively. The pump pulse with a peak power of 2.65 W and a minimum time duration of ∼2.64 ps is required for the reading process. Also, the peak power and minimum time duration of 4.7 W and 1.35 ps, respectively are required to accomplish the writing process. The study has been carried out by 3D PWE and 3D FDTD methods.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Reference67 articles.

1. Optical RAM and integrated optical memories: a survey;Alexoudi;Light: Science & Applications,2020

2. Assessment on rack intake flowrate uniformity of data center with cold aisle containment configuration;Chu;Journal of Building Engineering,2020

3. All-optical on-chip bit memory based on ultra high Q InGaAsP photonic crystal;Shinya;Opt. Express,2008

4. All-optical memories based on photonic crystal nanocavities;Shinya,2009

5. Low-power nanophotonic devices based on photonic crystals towards dense photonic network on chip;Notomi;IET Circuits, Devices & Systems,2011

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3