Determination of Very Low Level of Free Formaldehyde in Liquid Detergents and Cosmetic Products Using Photoluminescence Method

Author:

Gholami Ali1ORCID,Mohsenikia Atefeh1,Masoum Saeed1

Affiliation:

1. Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan 87317-53153, Iran

Abstract

Formaldehyde is commonly used in detergents and cosmetic products as antibacterial agent and preservative. This substance is unfavorable for human health because it is known to be toxic for humans and causes irritation of eyes and skins. The toxicology studies of this compound indicate risk of detergents and cosmetic formulations with a minimum content of 0.05% free formaldehyde. Therefore, determination of formaldehyde as quality control parameter is very important. In this study, a photoluminescence method was achieved by using 2-methyl acetoacetanilide. Also, the Box-Behnken design was applied for optimization of Hantzsch reaction for formaldehyde derivatization. The investigated factors (variables) were temperature, % v/v ethanol, reaction time, ammonium acetate, and 2-methyl acetoacetanilide concentration. The linear range was obtained from 0.33–20 × 10−7 M (1–60 μg·kg−1) and the limit of detection (LOD) was 0.12 μg·kg−1. The proposed method was applied for the analysis of Iranian brands of liquid detergents and cosmetic products. The formaldehyde content of these products was found to be in the range of 0.03–3.88%. Some brands of these products had higher concentration than the maximum allowed concentration of 0.2%. High recoveries (96.15%–104.82%) for the spiked dishwashing liquid and hair shampoo indicate the proposed method is proper for the assessment of formaldehyde in detergents and cosmetic products. The proposed methodology has some advantages compared with the previous methods such as being rapid, without the necessity of applying separation, low cost, and the fact that the derivatization reaction is carried out at room temperature without any heating system.

Funder

University of Kashan

Publisher

Hindawi Limited

Subject

Computer Science Applications,Instrumentation,General Chemical Engineering,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3