Pore-Scale Modeling of Mixing-Induced Reaction Transport through a Single Self-Affine Fracture

Author:

Dou Zhi1ORCID,Zhou Zhifang1,Wang Jinguo1,Liu Jin1ORCID

Affiliation:

1. School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China

Abstract

This pore-scale modeling study in single self-affine fractures showed that the heterogeneous flow field had a significant influence on the mixing-induced reaction transport. We generated the single self-affine fracture by the successive random additions (SRA) technique. The pore-scale model was developed by coupling the Navier-Stoke equation (NSE) and advection-diffusion equation with reaction (ADER). Eddies were captured in the self-affine fracture due to the increasing Reynolds number and the sudden expansion of aperture. The flux-weighted breakthrough curves (BTCs) of reaction product showed the typical non-Fickian characteristics (i.e., “early arrival” and “heavy tail”). It was found that the reactant was involved in eddies and then reacted inside the eddy-controlled domain. Consequently, eddies played a significant role in delaying the mass exchange process between the eddy-controlled domain and the main flow channel, which resulted in the “heavy tail” in BTCs. As the Reynolds number increased, the breakthrough time increased while the concentration peaks of BTCs decreased. Furthermore, the dilution index presenting the exponential of the Shannon entropy of a concentration probability distribution was used to quantify the degree of reactant mixing. The results showed that the quantification of dilution for nonreaction transport was in good agreement with the outcomes of mixing-induced reaction transport. The high Reynolds number and Peclet number had a negative influence on the mixing process at the early time whereas they led to the enhanced mixing process at the late time.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3