Applicability of the Continuum Mapping Approach for Groundwater Flow Modeling in 3D Fracture Networks

Author:

Chen Gan1ORCID,Wu Jianfeng1ORCID,Song Jian1ORCID,Zhu Xiaobin1ORCID,Wu Jichun1ORCID

Affiliation:

1. 1 Department of Hydrosciences School of Earth Sciences and Engineering Nanjing University Nanjing 210023 China nju.edu.cn

Abstract

Abstract A methodology for simulating groundwater flow in three-dimensional (3D) stochastic fracture rocks based on a commonly used finite-difference method is presented in this paper. Different realizations of fracture networks are generated by the fracture continuum method (FCM), in which appropriate 3D cuboids are used to describe the geometry of fractures. Then, the effects of different parameter distributions on the fracture networks indicated that the length, orientation, and density of fractures all play significant roles in the connectivity of fractures in this methodology. Greater length and density and wider orientation range of fractures lead to greater connectivity. The proper contrast in hydraulic conductivities between the fractures and matrix is found to be approximately 105 due to the contribution of fluid flow in the matrix which can be ignored. It is shown that the fracture density plays a key role in stabilizing the equivalent hydraulic conductivity (Ke) of the fracture networks. Furthermore, the greater length and closer orientation of fractures to the general flow direction, the larger Ke of the generated fracture networks possess. The findings of this study can help for a better understanding of the mechanism of FCM and the influence of geometry characteristics on the hydraulic conductivity of FCM models.

Funder

National Natural Science Foundation of China

National Key Research and Development Plan of China

Publisher

GeoScienceWorld

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3