Influence of Angiotensin II Subtype 2 Receptor (AT2R) Antagonist, PD123319, on Cardiovascular Remodelling of Aged Spontaneously Hypertensive Rats during Chronic Angiotensin II Subtype 1 Receptor (AT1R) Blockade

Author:

Jones Emma S.1,Black M. Jane2,Widdop Robert E.1

Affiliation:

1. Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia

2. Department of Anatomy and Cell Biology, Monash University, Clayton, VIC 3800, Australia

Abstract

Cardiac AT2R expression is upregulated in the normal process of aging. In this study we determined the contribution of AT2R to chronic antihypertensive and remodelling effects of AT1R blockade in aged hypertensive rats. Adult (20 weeks) and senescent (20 months) spontaneously hypertensive rats (SHRs) were treated with either the AT1R antagonist, candesartan cilexetil (2 mg/kg/day), the AT2R antagonist, PD123319 (10 mg/kg/day), or a combination of the 2 compounds. Mean arterial pressure (MAP) and left ventricular volume were markedly decreased by candesartan cilexetil, however, simultaneous treatment with PD123319 had no additional effect on either parameter. Perivascular fibrosis was significantly reduced by candesartan cilexetil in aged animals only, and this effect was reversed by concomitant PD123319 administration. Vascular hypertrophy was reduced by candesartan cilexetil, and these effects were reversed by simultaneous PD123319. These results suggest that AT2R stimulation does not significantly influence the antihypertensive effect of chronic AT1R blockade, but plays a role in the regulation of vascular structure. The severe degree of cardiac perivascular fibrosis in senescent animals was regressed by AT1R blockade and this effect was reversed by simultaneous AT2R inhibition, demonstrating an antifibrotic role of AT2R stimulation in the aging hypertensive heart.

Funder

National Health and Medical Research Council

Publisher

Hindawi Limited

Subject

Internal Medicine

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3