A Model for Surface Defect Detection of Industrial Products Based on Attention Augmentation

Author:

Li Gang1ORCID,Shao Rui1ORCID,Wan Honglin2ORCID,Zhou Mingle1ORCID,Li Min1ORCID

Affiliation:

1. Shandong Computer Science Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China

2. School of Physical and Electronic Sciences, Shandong Normal University, Jinan 250014, China

Abstract

Detecting product surface defects is an important issue in industrial scenarios. In the actual scene, the shooting angle and the distance between the industrial camera and the shooting object often vary, which results in a large variation in the scale and angle. In addition, high-speed cameras are prone to motion blur, which further deteriorates the defect detection results. In order to solve the above problems, this study proposes a surface defect detection model for industrial products based on attention enhancement. The network takes advantage of the lower-level and higher-resolution feature map from the backbone to improve Path Aggregation Network (PANet) in object detection. This study makes full use of multihead self-attention (MHSA), an independent attention block for enhancing the backbone network, which has made considerable progress for practical application in industry and further improvement of the surface defect detection. Moreover, some tricks have been adopted that can improve the detection performance, such as data augmentation, grayscale filling, and channel conversion of input images. Experiments in this study on internal datasets and four public datasets demonstrate that our model has achieved good performance in industrial scenarios. On the internal dataset, the mAP@.5 result of our model is 98.52%. In the RSDDs dataset, the model in this study achieves 86.74%. In the BSData dataset, the model reaches 82.00%. Meanwhile, it achieves 81.09% and 74.67% on the NRSD-MN and NEU-DET datasets, respectively. This study has demonstrated the effectiveness and certain generalization ability of the model from internal datasets and public datasets.

Funder

Key R&D Plan of Shandong Province

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference42 articles.

1. Microsoft COCO: Common Objects in Context;T.-Y. Lin

2. The Pascal Visual Object Classes (VOC) Challenge

3. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

4. Path Aggregation Network for Instance Segmentation

5. ImageNet Classification with Deep Convolutional Neural Networks;Ts Technicolor;Advances in neural information processing systems,2012

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3