Developing a Deep Learning-Based Defect Detection System for Ski Goggles Lenses

Author:

Dang Dinh-Thuan12,Wang Jing-Wein3ORCID

Affiliation:

1. Department of Electronics Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan

2. Department of Information Technology, Pham Van Dong University, Quang Ngai 57000, Vietnam

3. Institute of Photonics Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan

Abstract

Ski goggles help protect the eyes and enhance eyesight. The most important part of ski goggles is their lenses. The quality of the lenses has leaped with technological advances, but there are still defects on their surface during manufacturing. This study develops a deep learning-based defect detection system for ski goggles lenses. The first step is to design the image acquisition model that combines cameras and light sources. This step aims to capture clear and high-resolution images on the entire surface of the lenses. Next, defect categories are identified, including scratches, watermarks, spotlight, stains, dust-line, and dust-spot. They are labeled to create the ski goggles lenses defect dataset. Finally, the defects are automatically detected by fine-tuning the mobile-friendly object detection model. The mentioned defect detection model is the MobileNetV3 backbone used in a feature pyramid network (FPN) along with the Faster-RCNN detector. The fine-tuning includes: replacing the default ResNet50 backbone with a combination of MobileNetV3 and FPN; adjusting the hyper-parameter of the region proposal network (RPN) to suit the tiny defects; and reducing the number of the output channel in FPN to increase computational performance. Our experiments demonstrate the effectiveness of defect detection; additionally, the inference speed is fast. The defect detection accuracy achieves a mean average precision (mAP) of 55%. The work automatically integrates all steps, from capturing images to defect detection. Furthermore, the lens defect dataset is publicly available to the research community on GitHub. The repository address can be found in the Data Availability Statement section.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3