Reconstructing 3D Model from Single-View Sketch with Deep Neural Network

Author:

Wang Fei1ORCID,Yang Yu2,Zhao Baoquan3ORCID,Jiang Dazhi1ORCID,Chen Siwei1,Sheng Jianqiang4

Affiliation:

1. Shantou University, Shantou, China

2. Shenzhen Securities Information Co., Ltd, Shenzhen, China

3. Guilin University of Electronic Technology, Guilin, China

4. Shenzhen Institute of Information Technology, Shenzhen, China

Abstract

In this paper, we introduce a novel 3D shape reconstruction method from a single-view sketch image based on a deep neural network. The proposed pipeline is mainly composed of three modules. The first module is sketch component segmentation based on multimodal DNN fusion and is used to segment a given sketch into a series of basic units and build a transformation template by the knots between them. The second module is a nonlinear transformation network for multifarious sketch generation with the obtained transformation template. It creates the transformation representation of a sketch by extracting the shape features of an input sketch and transformation template samples. The third module is deep 3D shape reconstruction using multifarious sketches, which takes the obtained sketches as input to reconstruct 3D shapes with a generative model. It fuses and optimizes features of multiple views and thus is more likely to generate high-quality 3D shapes. To evaluate the effectiveness of the proposed method, we conduct extensive experiments on a public 3D reconstruction dataset. The results demonstrate that our model can achieve better reconstruction performance than peer methods. Specifically, compared to the state-of-the-art method, the proposed model achieves a performance gain in terms of the five evaluation metrics by an average of 25.5% on the man-made model dataset and 23.4% on the character object dataset using synthetic sketches and by an average of 31.8% and 29.5% on the two datasets, respectively, using human drawing sketches.

Funder

Li Ka Shing Foundation

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3