Brain Connectivity Studies on Structure-Function Relationships: A Short Survey with an Emphasis on Machine Learning

Author:

Wein Simon12ORCID,Deco Gustavo34,Tomé Ana Maria5,Goldhacker Markus12ORCID,Malloni Wilhelm M.2,Greenlee Mark W.2ORCID,Lang Elmar W.1

Affiliation:

1. CIML, Biophysics, University of Regensburg, Regensburg 93040, Germany

2. Experimental Psychology, University of Regensburg, Regensburg 93040, Germany

3. Center for Brain and Cognition, Department of Technology and Information, University Pompeu Fabra, Carrer Tanger, 122-140, Barcelona 08018, Spain

4. Institució Catalana de la Recerca i Estudis Avançats, University Barcelona, Passeig Lluís Companys 23, Barcelona 08010, Spain

5. IEETA/DETI, University de Aveiro, Aveiro 3810-193, Portugal

Abstract

This short survey reviews the recent literature on the relationship between the brain structure and its functional dynamics. Imaging techniques such as diffusion tensor imaging (DTI) make it possible to reconstruct axonal fiber tracks and describe the structural connectivity (SC) between brain regions. By measuring fluctuations in neuronal activity, functional magnetic resonance imaging (fMRI) provides insights into the dynamics within this structural network. One key for a better understanding of brain mechanisms is to investigate how these fast dynamics emerge on a relatively stable structural backbone. So far, computational simulations and methods from graph theory have been mainly used for modeling this relationship. Machine learning techniques have already been established in neuroimaging for identifying functionally independent brain networks and classifying pathological brain states. This survey focuses on methods from machine learning, which contribute to our understanding of functional interactions between brain regions and their relation to the underlying anatomical substrate.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3