Connectome-based schizophrenia prediction using structural connectivity - Deep Graph Neural Network(sc-DGNN)

Author:

Udayakumar P.1,Subhashini R.1

Affiliation:

1. School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore, India

Abstract

BACKGROUND: Connectome is understanding the complex organization of the human brain’s structural and functional connectivity is essential for gaining insights into cognitive processes and disorders. OBJECTIVE: To improve the prediction accuracy of brain disorder issues, the current study investigates dysconnected subnetworks and graph structures associated with schizophrenia. METHOD: By using the proposed structural connectivity-deep graph neural network (sc-DGNN) model and compared with machine learning (ML) and deep learning (DL) models.This work attempts to focus on eighty-eight subjects of diffusion magnetic resonance imaging (dMRI), three classical ML, and five DL models. RESULT: The structural connectivity-deep graph neural network (sc-DGNN) model is proposed to effectively predict dysconnectedness associated with schizophrenia and exhibits superior performance compared to traditional ML and DL (GNNs) methods in terms of accuracy, sensitivity, specificity, precision, F1-score, and Area under receiver operating characteristic (AUC). CONCLUSION: The classification task on schizophrenia using structural connectivity matrices and experimental results showed that linear discriminant analysis (LDA) performed 72% accuracy rate in ML models and sc-DGNN performed at a 93% accuracy rate in DL models to distinguish between schizophrenia and healthy patients.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3