The Traffic Flow Prediction Method Using the Incremental Learning-Based CNN-LTSM Model: The Solution of Mobile Application

Author:

Shao Yanli1ORCID,Zhao Yiming1ORCID,Yu Feng1ORCID,Zhu Huawei2ORCID,Fang Jinglong1ORCID

Affiliation:

1. Key Laboratory of Complex Systems Modeling and Simulation, School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China

2. School of Information and Electrical Engineering, Zhejiang University City College, Hangzhou 310015, China

Abstract

With the acceleration of urbanization and the increase in the number of motor vehicles, more and more social problems such as traffic congestion have emerged. Accordingly, efficient and accurate traffic flow prediction has become a research hot spot in the field of intelligent transportation. However, traditional machine learning algorithms cannot further optimize the model with the increase of the data scale, and the deep learning algorithms perform poorly in mobile application or real-time application; how to train and update deep learning models efficiently and accurately is still an urgent problem since they require huge computation resources and time costs. Therefore, an incremental learning-based CNN-LTSM model, IL-TFNet, is proposed for traffic flow prediction in this study. The lightweight convolution neural network-based model architecture is designed to process spatiotemporal and external environment features simultaneously to improve the prediction performance and prediction efficiency of the model. Especially, the K-means clustering algorithm is applied as an uncertainty feature to extract unknown traffic accident information. During the model training, instead of the traditional batch learning algorithm, the incremental learning algorithm is applied to reduce the cost of updating the model and satisfy the requirements of high real-time performance and low computational overhead in short-term traffic prediction. Furthermore, the idea of combining incremental learning with active learning is proposed to fine-tune the prediction model to improve prediction accuracy in special situations. Experiments have proved that compared with other traffic flow prediction models, the IL-TFNet model performs well in short-term traffic flow prediction.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3