Traffic Flow Prediction Research Based on an Interactive Dynamic Spatial–Temporal Graph Convolutional Probabilistic Sparse Attention Mechanism (IDG-PSAtt)

Author:

Ding Zijie12ORCID,He Zhuoshi13,Huang Zhihui13,Wang Junfang13,Yin Hang13

Affiliation:

1. State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China

2. Institute of Advanced Technology, University of Science and Technology of China, Hefei 230000, China

3. Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China

Abstract

Accurate traffic flow prediction is highly important for relieving road congestion. Due to the intricate spatial–temporal dependence of traffic flows, especially the hidden dynamic correlations among road nodes, and the dynamic spatial–temporal characteristics of traffic flows, a traffic flow prediction model based on an interactive dynamic spatial–temporal graph convolutional probabilistic sparse attention mechanism (IDG-PSAtt) is proposed. Specifically, the IDG-PSAtt model consists of an interactive dynamic graph convolutional network (IL-DGCN) with a spatial–temporal convolution (ST-Conv) block and a probabilistic sparse self-attention (ProbSSAtt) mechanism. The IL-DGCN divides the time series of a traffic flow into intervals and synchronously and interactively shares the captured dynamic spatiotemporal features. The ST-Conv block is utilized to capture the complex dynamic spatial–temporal characteristics of the traffic flow, and the ProbSSAtt block is utilized for medium-to-long-term forecasting. In addition, a dynamic GCN is generated by fusing adaptive and learnable adjacency matrices to learn the hidden dynamic associations among road network nodes. Experimental results demonstrate that the IDG-PSAtt model outperforms the baseline methods in terms of prediction accuracy. Specifically, on METR-LA, the mean absolute error (MAE) and root mean square error (RMSE) induced by IDG-PSAtt for a 60 min forecasting scenario are reduced by 0.75 and 1.31, respectively, compared to those of the state-of-the-art models. This traffic flow prediction improvement will lead to more precise estimates of the emissions produced by mobile sources, resulting in more accurate air quality forecasts. Consequently, this research will greatly support local environmental management efforts.

Funder

wang junfang

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3