Affiliation:
1. Department of Electronics, Faculty of Applied Sciences, Wayamba University of Sri Lanka, Kuliyapitiya, Sri Lanka
2. Department of Civil Engineering, Faculty of Engineering, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka
Abstract
Wind power, as a renewable energy resource, has taken much attention of the energy authorities in many countries, as it is used as one of the major energy sources to satisfy the ever-increasing energy demand. However, careful attention is needed in identifying the wind power potential in a particular area due to climate changes. In this sense, forecasting both wind power generation and wind power potential is essential. This paper develops artificial neural network (ANN) models to forecast wind power generation in “Pawan Danawi”, a functioning wind farm in Sri Lanka. Wind speed, wind direction, and ambient temperature of the area were used as the independent variable matrices of the developed ANN models, while the generated wind power was used as the dependent variable. The models were tested with three training algorithms, namely, Levenberg-Marquardt (LM), Scaled Conjugate Gradient (SCG), and Bayesian Regularization (BR) training algorithms. In addition, the model was calibrated for five validation percentages (5% to 25% in 5% intervals) under each algorithm to identify the best training algorithm with the most suitable training and validation percentages. Mean squared error (MSE), coefficient of correlation (R), root mean squared error ratio (RSR), Nash number, and BIAS were used to evaluate the performance of the developed ANN models. Results revealed that all three training algorithms produce acceptable predictions for the power generation in the Pawan Danawi wind farm with R > 0.91, MSE < 0.22, and BIAS < 1. Among them, the LM training algorithm at 70% of training and 5% of validation percentages produces the best forecasting results. The developed models can be effectively used in the prediction of wind power at the Pawan Danawi wind farm. In addition, the models can be used with the projected climatic scenarios in predicting the future wind power harvest. Furthermore, the models can acceptably be used in similar environmental and climatic conditions to identify the wind power potential of the area.
Subject
Electrical and Electronic Engineering,General Computer Science,Signal Processing
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献