Affiliation:
1. University of Transport Technology, 54 Trieu Khuc, Thanh Xuan, Hanoi, Vietnam
Abstract
Beam-shaped components in large mechanical structures such as propellers, gas turbine blades, engine turbines, rotating railway bridges, and so on, when operating, usually engage in rotational movement around the fixed axis. Studying the mechanical behavior of these structures has great significance in engineering practice. Therefore, this paper is the first investigation on the static bending of rotating functionally graded material (FGM) beams with initial geometrical imperfections in thermal environments, where the higher-order shear deformation theory and the finite element method (FEM) are exercised. The material properties of beams are assumed to be varied only in the thickness direction and changed by the temperature effect, which increases the correctness and proximity to technical reality. The numerical results of this work are compared with those of other published papers to evaluate the accuracy of the proposed theory and mechanical model used in this paper. A series of parameter studies is carried out such as geometrical and material properties, especially the rotational speed and temperature, to evaluate their influences on the bending responses of structures.
Funder
University of Transport Technology Foundation for Science and Technology Development
Subject
General Engineering,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献