Finite Element Modeling for Static Bending Behaviors of Rotating FGM Porous Beams with Geometrical Imperfections Resting on Elastic Foundation and Subjected to Axial Compression

Author:

Van Dang Nguyen1ORCID

Affiliation:

1. University of Transport Technology, 54 Trieu Khuc, Thanh Xuan, Hanoi, Vietnam

Abstract

The static bending analysis of the FG porous beam resting on the two-parameter elastic foundation is initially carried out using a combination of Reddy’s high-order shear deformation theory and the finite element technique, where the initial geometrical imperfection and rotation movement in one fixed axis are calculated. Through the power-law distribution function with porosities, material characteristics vary constantly from one surface to the next in the direction of thickness, and the beam is concurrently impacted by an acting force perpendicular to the beam axis and an axial compressive force. The stiffness matrix of the beam element changes as a result, and the static bending response of this beam is significantly different from that of ordinary beams. Comparison cases with published findings are used to verify the computational theory. The calculations clearly reveal many innovations for rotating beams that are influenced by many different kinds of loads, which may be used to the designing, manufacturing, and usage of these structures in reality.

Funder

University of transport technology Foundation for Science and Technology Development

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3