Osseointegration of a 3D Printed Stemmed Titanium Dental Implant: A Pilot Study

Author:

Tedesco James1,Lee Bryan E. J.2,Lin Alex Y. W.13,Binkley Dakota M.4,Delaney Kathleen H.5,Kwiecien Jacek M.56,Grandfield Kathryn12ORCID

Affiliation:

1. Department of Materials Science and Engineering, McMaster University, Hamilton, ON, Canada

2. School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada

3. Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA

4. School of Integrated Science, McMaster University, Hamilton, ON, Canada

5. Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada

6. Department of Clinical Pathomorphology, Medical University of Lublin, Lublin, Poland

Abstract

In this pilot study, a 3D printed Grade V titanium dental implant with a novel dual-stemmed design was investigated for its biocompatibility in vivo. Both dual-stemmed (n = 12) and conventional stainless steel conical (n = 4) implants were inserted into the tibial metaphysis of New Zealand white rabbits for 3 and 12 weeks and then retrieved with the surrounding bone, fixed, dehydrated, and embedded into epoxy resin. The implants were analyzed using correlative histology, microcomputed tomography, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The histological presence of multinucleated osteoclasts and cuboidal osteoblasts revealed active bone remodeling in the stemmed implant starting at 3 weeks and by 12 weeks in the conventional implant. Bone-implant contact values indicated that the stemmed implants supported bone growth along the implant from the coronal crest at both 3- and 12-week time periods and showed bone growth into microporosities of the 3D printed surface after 12 weeks. In some cases, new bone formation was noted in between the stems of the device. Conventional implants showed mechanical interlocking but did have indications of stress cracking and bone debris. This study demonstrates the comparable biocompatibility of these 3D printed stemmed implants in rabbits up to 12 weeks.

Funder

NSERC Engage Grant Program

Publisher

Hindawi Limited

Subject

General Dentistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3