Current applications of 3D printing in dental implantology: A scoping review mapping the evidence

Author:

Pradíes Guillermo1ORCID,Morón‐Conejo Belén1ORCID,Martínez‐Rus Francisco1ORCID,Salido María Paz1ORCID,Berrendero Santiago1

Affiliation:

1. Department of Conservative and Prosthetic Dentistry Faculty of Dentistry University Complutense of Madrid Madrid Spain

Abstract

AbstractObjectivesThis scoping review aimed to identify the available evidence in the use of 3D printing technology in dental implantology. Due to the broad scope of the subject and its application in implantology, three main areas of focus were identified: (1) customized dental implants, (2) manufacturing workflow for surgical implant guides, and (3) related implant‐supported prostheses factors, which include the metallic primary frameworks, secondary ceramic or polymer superstructures, and 3D implant analog models.Materials and MethodsOnline databases (Medline, Cochrane, Embase, and CINAHL) were used to identify the studies published up to February 2023 in English. Two experienced reviewers performed independently the screening and selection among the 1737 studies identified. The articles evaluated the additive manufacturing (AM) technology, materials, printing, and post‐processing parameters regarding dental implantology.ResultsThe 132 full‐text studies that met the inclusion criteria were examined. Thirteen studies of customized dental implants, 22 studies about the workflow for surgical implant guides, and 30 studies of related implant‐supported prostheses factors were included.Conclusions(1) The clinical evidence about AM titanium and zirconia implants is scarce. Early data on survival rates, osseointegration, and mechanical properties are being reported. (2) 3D printing is a proven manufacturing technology to produce surgical implant guides. Adherence to the manufacturer's instructions is crucial and the best accuracy was achieved using MultiJet printer. (3) The quality of 3D printed prosthetic structures and superstructures is improving remarkably, especially on metallic alloys. However, better marginal fit and mechanical properties can be achieved with milling technology for metals and ceramics.

Publisher

Wiley

Subject

Oral Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3