Experiment of Carbonate Dissolution: Implication for High Quality Carbonate Reservoir Formation in Deep and Ultradeep Basins

Author:

He Zhiliang12ORCID,Ding Qian12ORCID,Wo Yujin12,Zhang Juntao12,Fan Ming13,Yue Xiaojuan4

Affiliation:

1. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100083, China

2. Laboratory of Structural and Sedimentological Reservoir Geology, Petroleum Exploration and Production Research Institute, SINOPEC, Beijing 100083, China

3. Wuxi Research Branch of Petroleum and Production Research Institute, SINOPEC, Wuxi 214151, China

4. China University of Petroleum-Beijing, Beijing 102249, China

Abstract

As the most frontiers in petroleum geology, the study of dissolution-based rock formation in deep carbonate reservoirs provides insight into pore development mechanism of petroleum reservoir space, while predicting reservoir distribution in deep-ultradeep layers. In this study, we conducted dissolution-precipitation experiments simulating surface to deep burial environments (open and semiopen systems). The effects of temperature, pressure, and dissolved ions on carbonate dissolution-precipitation were investigated under high temperature and pressure (~200°C; ~70 Mpa) with a series of petrographic and geochemical analytical methods. The results showed that the window-shape dissolution curve appeared in 75~150°C in the open system and 120~175°C in the semiopen system. Furthermore, the dissolution weight loss of carbonate rocks in the open system was higher than that of semiopen system, making it more favorable for gaining porosity. The type of fluid and rock largely determines the reservoir quality. In the open system, the dissolution weight loss of calcite was higher than that of dolomite with 0.3% CO2as the reaction fluid. In the semiopen system, the weight loss from dolomitic limestone prevailed with 0.3% CO2as the reaction fluid. Our study could provide theoretical basis for the prediction of high quality carbonate reservoirs in deep and ultradeep layers.

Funder

Chinese Academy of Sciences

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3