Mechanistic analysis of acid gas storage and oil recovery in naturally fractured reservoirs using single matrix block approach

Author:

Shirzad Goran1,Sadeghzadeh Zahra1,Assareh Mehdi1

Affiliation:

1. School of Chemical Petroleum and Gas Engineering Iran University of Science and Technology Tehran Iran

Abstract

AbstractThe objective of this study is to assess the storage of acid gas, containing CO2 and H2S, in a depleted naturally fractured reservoir (NFR) using single matrix block (SMB) approach. The acid gas dissolution in oil is considered by Peng‐Robinson equation of state and compositional simulation. The PHREEQC package is used to determine acid gas solubility in formation brine. Three types of acid gases with different compositions are used for this study and their swelling behavior and miscibility in relation to the reservoir oil are analyzed. An SMB model, with a matrix block surrounded by fractures, is constructed, and validated for simulation of a real experiment. The simulation is conducted for synthetic and real reservoir fluids when the oil is in its residual saturation. A sensitivity analysis is performed to study the effects of key parameters, such as acid gas composition, reservoir pressure, permeability, porosity and matrix height on the storage capacity and oil recovery factor. The matrix has a volume of 27 m3 and about half of acid gas storage is achieved in the first 5 years while the simulations are run for 30 years. The results show that up to 90% of remained oil is recoverable, and more than 0.67 kmol of acid gas per cubic meter of matrix is stored whether matrix contains a real oil or a synthetic one. Higher storage is achieved for higher matrix porosities and heights and large H2S proportion in acid gas. In all cases about 10% of acid gas is trapped in water and the remaining 90% is dissolved in oil. The mineral trapping was more active in CO2‐rich acid gases. While about 10 kg of the matrix rock was dissolved in the acidic brine when the acid gas contained H2S, the amount of the dissolved minerals in acidic brine resulted from the injection of CO2‐rich acid gas was more than 16 kg. Finally, this study gives a comparative analysis of the storage performance of acid gas mixture and pure CO2. © 2024 Society of Chemical Industry and John Wiley & Sons, Ltd.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3