Affiliation:
1. Tunis El Manar University, National Engineering School of Tunis, Department of Electrical Engineering, Le Belvédère B.P. 37, Tunis 1002, Tunisia
Abstract
This paper proposes an adaptive switch controller (ASC) design for the nonlinear multi-input multi-output system (MIMO). In fact, the proposed method is an online switch between the neural network adaptive PID (APID) controller and the neural network indirect adaptive controller (IAC). According to the design of the neural network IAC scheme, the adaptation law has been developed by the gradient descent (GD) method. However, the adaptive PID controller is built based on the neural network combining the PID control and explicit neural structure. The strategy of training consists of online tuning of the neural controller weights using the backpropagation algorithm to select the suitable combination of PID gains such that the error between the reference signal and the actual system output converges to zero. The stability and tracking performance of the neural network ASC, the neural network APID, and the neural network IAC are analyzed and evaluated by the Lyapunov function. Then, the controller results are compared between APID, IAC, and ASC, in this paper, applying to a nonlinear system. From simulations, the proposed adaptive switch controller has better effects both on response time and on tracking performance with smallest MSE.
Subject
General Engineering,General Mathematics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献