Affiliation:
1. School of Computing Science, University of Glasgow, Glasgow, UK
Abstract
There is a large body of legacy scientific code in use today that could benefit from execution on accelerator devices like GPUs and FPGAs. Manual translation of such legacy code into device-specific parallel code requires significant manual effort and is a major obstacle to wider FPGA adoption. We are developing an automated optimizing compiler TyTra to overcome this obstacle. The TyTra flow aims to compile legacy Fortran code automatically for FPGA-based acceleration, while applying suitable optimizations. We present the flow with a focus on two key optimizations, automatic pipelining and vectorization. Our compiler frontend extracts patterns from legacy Fortran code that can be pipelined and vectorized. The backend first creates fine and coarse-grained pipelines and then automatically vectorizes both the memory access and the datapath based on a cost model, generating an OpenCL-HDL hybrid working solution for FPGA targets on the Amazon cloud. Our results show up to 4.2× performance improvement over baseline OpenCL code.
Funder
Engineering and Physical Sciences Research Council
Subject
Hardware and Architecture
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献