The Energy-Efficient Dynamic Route Planning for Electric Vehicles

Author:

Zhou Wenjuan1,Wang Li2ORCID

Affiliation:

1. State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China

2. School of Modern Post, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract

Aiming to provide an approach for finding energy-efficient routes in dynamic and stochastic transportation networks for electric vehicles, this paper addresses the route planning problem in dynamic transportation network where the link travel times are assumed to be random variables to minimize total energy consumption and travel time. The changeable signals are introduced to establish state-space-time network to describe the realistic dynamic traffic network and also used to adjust the travel time according to the signal information (signal cycle, green time, and red time). By adjusting the travel time, the electric vehicle can achieve a nonstop driving mode during the traveling. Further, the nonstop driving mode could avoid frequent acceleration and deceleration at the signal intersections so as to reduce the energy consumption. Therefore, the dynamically adjusted travel time can save the energy and eliminate the waiting time. A multiobjective 0-1 integer programming model is formulated to find the optimal routes. Two methods are presented to transform the multiobjective optimization problem into a single objective problem. To verify the validity of the model, a specific simulation is conducted on a test network. The results indicate that the shortest travel time and the energy consumption of the planning route can be significantly reduced, demonstrating the effectiveness of the proposed approaches.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3