Modulatory Effect of Probiotic Lactobacillus rhamnosus PB01 on Mechanical Sensitivity in a Female Diet-Induced Obesity Model

Author:

Alipour Hiva1ORCID,Gazerani Parisa12ORCID,Heidari Mahmoud13ORCID,Dardmeh Fereshteh1ORCID

Affiliation:

1. Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark

2. Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway

3. Department of Biology, Islamic Azad University, Gorgan Branch, Gorgan, Iran

Abstract

Obese animals and humans demonstrate higher sensitivity to pain stimuli. Among the endogenous factors prompting obesity, the intestinal microbiota has been proposed to influence responsiveness to pain. The beneficial effects of probiotics on obesity are well documented, whereas data on their analgesic efficacy is minimal. The protective effect of probiotics on nociception in diet-induced obese male mice has been previously demonstrated, but the sex differences in pain sensitivity and analgesic response do not allow for the generalization of these findings to the female gender. Hence, this study aimed at investigating the potential effects of oral probiotic supplementation on mechanical pain thresholds in female diet-induced obese mice compared with controls. Thirty-two adult female mice ( N = 32 ) were randomly divided into two groups receiving standard (normal-weight group; NW) or high-fat diet (diet-induced obesity; DIO). All rats received a single daily dose (1 × 109 CFU) of probiotics (Lactobacillus rhamnosus PB01, DSM14870) for four weeks by gavage. Mechanical pain thresholds were recorded by an electronic von Frey device at baseline, at the end of weeks 2, 4, 6, and 8 in both DIO and NW groups with and without consumption of probiotics. Blood samples were obtained for the measurement of lipid profile and reproductive hormone levels. Bodyweight was considerably lower ( P < 0.001 ) in groups supplied with probiotics than groups without probiotics. Pressure pain threshold values showed a significant ( P < 0.001 ) increase (reduced pain sensitivity) following probiotic supplementation, proposing a modulatory effect of probiotics on mechanical sensory circuits and mechanical sensitivity, which might be a direct consequence of weight loss or an indirect result of the probiotics’ anti-inflammatory properties. Understanding the precise underlying mechanism for the effect of probiotics on weight loss and mechanical pain sensitivity seen in this study warrants further investigation.

Funder

Aalborg University

Publisher

Hindawi Limited

Subject

Anesthesiology and Pain Medicine,Neurology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3