Affiliation:
1. Key Laboratory of Quality & Safety Control for Milk and Dairy Products, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
2. Laboratory of Quality and Safety Risk Assessment for Dairy Products, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
3. Milk and Milk Products Inspection Center, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
4. State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Abstract
Strontium (Sr) is an essential trace element in the human body and plays an important role in regulating male reproductive health. Recent studies have shown that gut flora plays a key role in maintaining spermatogenesis, as well as testicular health, through the gut–testis axis. At present, it is unclear whether gut microbiota can mediate the effects of Sr on sperm quality, and what the underlying mechanisms may be. We investigated the effects of different concentrations of strontium chloride (SrCl2) solutions (0, 50, 100, and 200 mg/kg BW) on reproductive function and gut microbiota in male Wistar rats (6–8 weeks, 250 ± 20 g). All the animals were euthanized after 37 days of treatment. The Sr-50 group significantly increased sperm concentration, sperm motility, and sperm viability in rats. After Sr treatment, serum and testicular testosterone (T) and Sr levels increased in a dose-dependent manner with increasing Sr concentration. At the same time, we also found that testicular marker enzymes (ACP, LDH) and testosterone marker genes (StAR, 3β-HSD, and Cyp11a1) increased significantly in varying degrees after Sr treatment, while serum NO levels decreased significantly in a dose-dependent manner. Further investigation of intestinal flora showed that SrCl2 affected the composition of gut microbiome, but did not affect the richness and diversity of gut microbiota. Sr treatment reduced the number of bacteria with negative effects on reproductive health, such as Bacteroidetes, Tenericutes, Romboutsia, Ruminococcaceae_UCG_014, Weissella, and Eubacterium_coprostanoligenes_group, and added bacteria with negative effects on reproductive health, such as Jeotgalicoccus. To further explore the Sr and the relationship between the gut microbiota, we conducted a Spearman correlation analysis, and the results showed that the gut microbiota was closely correlated with Sr content in serum and testicular tissue, sex hormone levels, and testicular marker enzymes. Additionally, gut microbiota can also regulate each other and jointly maintain the homeostasis of the body’s internal environment. However, we found no significant correlation between intestinal flora and sperm quality in this study, which may be related to the small sample size of our 16S rDNA sequencing. In conclusion, the Sr-50 group significantly increased T levels and sperm quality, and improved the levels of testicular marker enzymes and testosterone marker genes in the rats. Sr treatment altered the gut flora of the rats. However, further analysis of the effects of gut microbiota in mediating the effects of SrCl2 on male reproductive function is needed. This study may improve the current understanding of the interaction between Sr, reproductive health, and gut microbiota, providing evidence for the development of Sr-rich foods and the prevention of male fertility decline.
Funder
National Key R&D Program of China
the earmarked fund for CARS
Agricultural Science and Technology Innovation Program
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis