Affiliation:
1. Intelligent Transportation Systems Research Center, Wuhan University of Technology, Wuhan 430063, China
2. Engineering Research Center of Transportation Safety, Wuhan 430063, China
3. Wuhan Traffic Management Bureau, Wuhan 430030, China
Abstract
One goal for large-scale deployment of connected and autonomous vehicles is to achieve the traffic safety benefit since connected and autonomous vehicles (CAVs) could reduce the collision risk by enhancing the driver’s situation perception ability. Previous studies have analyzed the safety impact of CAVs involved in traffic, but only few studies examined the safety benefits brought by CAVs when approaching high-collision-risk road segments such as the freeway crash hotspots. This study chooses one freeway crash hotspot in Wuhan, China, as an instance and attempts to estimate the safety benefits for differential penetration rates (PRs) of CAVs using the surrogate safety assessment model (SSAM). First, the freeway crash hotspot is identified with kernel density estimation and simulated by VISSIM. Then, the intelligent driver model (IDM) and Wiedemann 99 (a car-following model) are adopted and calibrated to control the driving behaviors of CAVs and human-driven vehicles (HVs) in this study, respectively. The impact that rather CAVs are constrained with or without managed lanes on traffic safety is also discussed, and the PR of CAVs is set from 10% to 90%. The results of this study show that when the PR of CAVs is lower than 50%, there is no significant improvement on the safety measures such as conflicts, acceleration, and velocity difference, which are extracted from the vehicle trajectory data using SSAM. When the penetration rate is over 70%, the experiment results demonstrate that the traffic flow passing the freeway hotspot is with fewer conflicts, smaller acceleration, and smaller velocity difference in the scenario where CAVs are constrained with managed lane compared with the scenario without managed lane control. The safety benefit that CAVs bring needs to be discussed. The lane management of CAVs will also lead to distinct safety impact.
Funder
National Key Research and Development Program of China
Subject
Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献